

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

1

The Vocabulary Mapping Framework (VMF): an introduction
v1.0, December 12, 2009

This document provides an introduction to the structure and development of the Vocabulary Mapping
Framework (VMF) up to the end of the first stage of this work in November 2009. The document is in
two parts: an overview and a technical description. Further details on the background to the
JISC-funded project can be found on the project website at http://cdlr.strath.ac.uk/VMF/index.htm.

 Table of contents

1 Overview 2

1.1 Purpose of the VMF 2

1.2 Scope of first release 2

1.3 Form of release 3

1.4 Structure of the VMF matrix 3

1.5 Authorization of mappings 5

1.6 Ongoing maintenance and development 5

1.7 What the matrix is not 6

2 Technical description 7

2.1 Structure of the VMF matrix 7

2.2 Namespaces and term identification 7

2.3 Human-readable names and annotations 8

2.4 The VMF data model 8

2.5 Structure of a Concept Family 11

2.6 Building the matrix 12

 2.7 Concept Families for attributes 13

2.8 Upper ontology 13

2.9 Specialization of concepts 13

2.10 Primitive semantics 13

2.11 Concept family axioms 14

2.12 Conditional rules 14

2.13 Dependent roles 14

2.14 Displaced relationships 15

2.15 Membership of vocabularies 16

2.16 Concept names 16

2.17 QA and validation 16

2.18 Producing the matrix output 16

3 Producing scheme to scheme mappings 20

3.1 Example mappings 20

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

2

1. Overview

1.1 Purpose of the VMF

The initial aim of VMF is to provide a freely available tool which can be used to automatically
compute the “best fit” mappings between terms in controlled vocabularies in different metadata
schemes and messages (both standard and, in principle, proprietary) which are of interest to
the educational, bibliographic and content publishing sectors. This tool is known as the VMF
matrix. The ontology is likely to have other uses but this is the start point where there appears
to be immediate practical benefit.

1.2 Scope of first release

The first release of the VMF matrix (the “alpha” release, as it is usable for experimentation but
requires thorough practical testing, error-fixing and refinement) includes selected controlled
vocabularies and parts of vocabularies from CIDOC CRM, DCMI, DDEX, FRAD, FRBR, IDF, LOM
(IEEE), MARC21, MPEG21 RDD, ONIX and RDA as well as the complete RDA-ONIX Framework
from which VMF is in part derived. URLs for the above can be found at the project website.
The scope of VMF is not limited to these schemes and standards, but these are the initial focus,
and many of them have representatives in the VMF project.

The initial scope of the mapped vocabularies is:

Resource categories (eg CD, Ebook, Photograph)
Resource-to-Resource relators (eg IsVersionOf, HasTranslation)
Resource-to-Party relators (eg Author, EditedBy)
Party-to-Party relators (eg AffiliatedTo)
Party categories

However, there is no constraint in principle on the VMF matrix being used to map vocabularies
of any type. There is also no limitation in principle in the domains or vocabularies which might
be mapped through the matrix, as the underlying ontology is generic.

Statistics for the v1.000 release of VMF:

928 Concept families including:
1509 Resource Role concepts
890 Party Role concepts
11507 Relator concepts

824 terms mapped from third party vocabularies

Testing and updating of the matrix will be ongoing and changes will be incorporated in new
numbered versions as needed. As an ontology, the VMF matrix should be viewed as data rather
than software and so subject to routine updating.

The approach in this first stage has been “proof of concept”, so groups of terms with quite
diverse semantics from a variety of different schemes have been added to the matrix to test the
methodology, rather than concentrating on very homogenous vocabularies which would give
more complete but narrow results. The most similar vocabularies that have been mapped are
those for Resource-to-Party contributor relations, and some exemplary one-to-one mapping
results are shown in the appendix for Marc21 and ONIX vocabularies.

Attention has also been given to a thorough mapping of the classes in the CIDOC Content
Reference Model (CRM), as this is the most comprehensive structured data model among the
mapped schemas, and so provides a good test of the VMF method and the semantics of its
basic terms. This mapping appears1 to have been successful and has not raised any significant
issues (though as with all mappings, some consultation with those responsible for the scheme
will be needed to clarify some points).

1 Proof of the effectiveness of any mappings will come only with more thorough testing.

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

3

Particular attention has also been given to mapping relators from the recently published RDA
vocabularies. This is in part because they represent “state of the art” bibliographic metadata
values, expressed in relators, but also because they are based on the FRBR data model. FRBR is
challenging because it has three levels of abstraction for Resources (Work – Expression –
Manifestation) rather than the two (Work – Manifestation) normally used in content industry
schemes like ONIX or DDEX. Again the mappings appear to have been successful: the
FRBR/RDA model is more granular but the matrix can support mapping between these two
views.

1.3 Form of release
The VMF matrix as available for download from the VMF website as a single ontology in RDF
triples (in the TTL format) using RDF, RDFS and OWL axioms, which may be viewed and edited
in various ontology editing tools. Some comments on the use of the open source Protégé
ontology editor are made in section 2.18.

There are two versions available on the VMF website:

 VMF matrix complete (followed by version number and date)
 VMF matrix without mappings (followed by version number and date)

The second contains the VMF ontology on its own without the mapped terms.

1.4 Structure of the VMF matrix

The matrix is a hierarchical class ontology of concepts grouped methodically using an event-
based data model. This ontology can be extended as needed to provide a mapping point for
any term in a vocabulary.

Terms from vocabularies are mapped into the matrix, not mapped directly to one another. Once
a term is mapped onto the matrix, the internal links of the matrix establish computable
relationships with every other mapped term in the matrix. The matrix therefore represents the
sum total of all mapped concepts, plus other semantic relationships between them.

The matrix can then be queried, using SPARQL or another suitable language, to find the “best
fit” direct mappings from one vocabulary to another. The current matrix does not include these
direct “mappings out” from one vocabulary to another, but some illustrative results are provided
(see Appendix).

The next stage of VMF is to refine the most useful kinds of queries, leading (in all likelihood) to
the publication of recommended mappings for specific scheme pairs.

The VMF process is illustrated in simplified form in these three figures (note that the use of
terms names in these figures are simplified for human readability):

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

4

1. Creating the matrix

All concepts required to support mapping are added to the
underlying VMF ontology using a rich contextual data model

vmf:Adaptor

vmf:WordsAdaptor

vmf:Translator

vmf:SubtitlesTranslator

vmf:WordsCreator

vmf:TranslatorAndCommentator

vmf:Commentator

2. Mapping to VMF

Every term in a mapped vocabulary has a corresponding term in
the VMF ontology

vmf:Adaptor

vmf:WordsAdaptor

vmf:Translator

vmf:SubtitlesTranslator

vmf:WordsCreator

vmf:TranslatorAndCommentator

vmf:Commentator onix:Translated by

onix:Translated with
commentary by

ddex:Translator

Ddex:SubtitlesTranslator

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

5

vmf:Adaptor

vmf:WordsAdaptor

vmf:Translator

vmf:SubtitlesTranslator

vmf:WordsCreator

vmf:TranslatorAndCommentator

vmf:Commentator onix:Translated by

onix:Translated with
commentary by

ddex:Translator

ddex:SubtitlesTranslator

3. Mapping scheme to scheme

The matrix can be queried for the “best fit” starting from any
point…

1.5 Authorization of mappings
In the initial release, the mappings in the VMF matrix are not authorized by any third parties.
An essential part of the ongoing maintenance of VMF, if this is to happen, is that the
participating schemes authorise the mappings of their own vocabularies to the VMF.
Authorization means acknowledgement of the accuracy of the mappings. This process serves
two key functions: first, it provides validation for, and correction of, the mappings themselves,
and secondly it provides confidence for all participants and users. There is, of course, no such
thing as objective accuracy in mapping where human understanding is involved, and so
authorization represents “best endeavours” in this task.

As the VMF matrix will be freely available, there is no barrier to anyone attempting mappings or
queries of their own for any purpose, and we encourage this to help in the development of the
tool. However, it will not be sensible to allow mappings to be made in an ad hoc and
unvalidated way if those mappings are going to be authoritative and used by others. A
mapping represents a statement of equivalence between the concepts of two different parties
or domains, and both parties, or representatives of the domains, should give their assent to
them if at all possible.

For this reason it is intended that a “canonical” copy of the matrix is maintained to which all
authorised mappings are added.

Of course there is nothing to prevent a party mapping their own vocabularies into their own
copy of the matrix for private use: but because the matrix will be changing it will be sensible for
private mappings to be registered with the canonical version to ensure both authority and
currency.

1.6 Ongoing maintenance and development

An approach for ongoing maintenance and development of the VMF is being developed by the
Advisory Board. This includes:

• An organization willing to host and maintain the VMF website (the International DOI
Foundation has expressed interest in this role).

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

6

• A governance group: the current project Advisory Board is a prototype for this.

• A technical advisory group: including technical representatives from the main participating
schemes.

• A structure for enabling the ongoing maintenance and development of the matrix: this
need not be costly, and costs should probably be borne by schemes or organizations wishing to
map their vocabularies into the matrix, or to have them updated.

1.7 What the matrix is not

The matrix is a tool for computer, not human, use. It is a mapping tool, not a cataloguing tool
or a public vocabulary. It is a very large network of terms whose job is to provide paths by
which other terms may be connected: it is therefore not necessary for it to be generally
accessible or “user-friendly” to users of metadata in general.

It is also not a dictionary of the public meanings of words, or an attempt to provide definitive
meanings for particular words. In the VMF matrix each term has one precise meaning, and so
each word can be a label for only one VMF concept, whereas in the world at large the same
name may be associated with a range of diverse or related meanings, as is reflected in the
various controlled vocabularies being mapped to VMF. Names are invaluable clues to the
meaning of a term, but the unique meaning of a term is built up, and therefore recognised, by
its definition and the accumulation of logical relationships in the ontology. Because VMF must
represent the sum of its parts, it also becomes necessary for term names in VMF (which have to
be unique) to be more precise, and therefore less user-friendly, than in a smaller scheme.

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

7

2. Technical description

2.1 Structure of the VMF matrix

The VMF matrix is a ‘hub-and-spoke’ ontology expressed in RDF triples2. At present data is
initially prepared in an Excel workbook, from where it is automatically converted into RDF triples
in the TTL format, in which form it can be viewed and processed with freely available tools such
as the Protégé ontology editor and the Pellet OWL-DL reasoner.

The logical relationships within the matrix are expressed in a subset of the available RDF, RDFS
and OWL axioms:

Table 1: RDF, RDFS and OWL axioms in VMF

rdfs:subClassOf for relationships between a class and its parent(s)

rdfs:subPropertyOf for relationships between a relator and its parent(s)

owl:equivalentClass for mapping a class to its equivalent class in VMF

owl:equivalentProperty for mapping a relator to its equivalent relator in VMF

rdfs:domain for defining the class of the domain or subject of a relator

rdfs:range for defining the class of the range or object of a relator

owl:inverseOf for relating reciprocal relators

rdf:type for identifying membership of classes

owl:disjointWith for relating classes with no common members

owl:complementOf for relating disjoint classes that make up a parent concept

owl:intersectionOf for relating classes that are made by combining two or more
concepts

owl:unionOf for relating classes whose members may be either one thing or
another

Each term that requires mapping from another vocabulary has a corresponding equivalent term
in the matrix. These two terms are mapped using one of two relators owl:equivalentClass or
owl:equivalentProperty according to whether the term is a class or a relator. For example3:

marc21:Relationship_Librettist owl:equivalentClass vmf:Librettist
ddex:ResourceContributorRole_Designer owl:equivalentProperty vmf:DesignedCreation_Designer

The VMF terms are joined to one another by logical relations including the parent/child relations
of rdfs:subClassOf and rdfs:subPropertyOf according to whether the term is a class or a
relator. For example:

vmf:Librettist rdfs:subClassOf vmf:WriterOfWordsToGoWithMusic
vmf: CreationDesign_Designer rdfs:subPropertyOf vmf:Plan_Planner

and so on.

The VMF matrix therefore is the sum of all the concepts which are mapped into it, plus a large
number of other intermediate concepts which are needed to create computable relationships
between the mapped terms according to the VMF data model.

2.2 Namespaces and term identification

Each term in the matrix is identified by a URI4. Some schemes (including DC and RDA) publish
URIs for each of their terms. These are stored in the matrix. URIs for VMF terms will be
published in due course. In the alpha release of the matrix we have used the unregistered

2 It may be automatically transformed to be represented in other computable forms by those with the tools and motivation.
3 The triple representation is slightly simplified here fo rreadability
4 http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

8

domain www.vmfmatrix.org to support URIs for all terms. This or some other appropriate
domain will be registered in the next stage.

When a term from a vocabulary is mapped to the matrix, it is identified with a unique ID within
the matrix. For example, terms from DDEX have IDs in this form:

www.vmfmatrix.data/ddex#CreationType_MusicalWork.

These URIs are used only for managing internal matrix relationships. Because each term is
unique in the context of its own vocabulary, the same term name has a different URI in
different vocabularies within the same scheme .

This internal matrix ID is linked to a corresponding published URI if there is one, and so
mappings can be input or output using those URIs. This scheme URI for a term is shown in the
matrix using the relator vmf:HasURI. For example:

rda:Creator-WorkRelator_designer vmf:HasURI
http://RDVocab.info/RDARelationshipsWEMI/evaluatedInExpression

2.3 Human-readable names and annotations

The human readable label, definition, comments (if any) and short code or ID (if any) for each
term are shown in the matrix using these relators following the term ID:

Table 2: Annotation relators

vmf:HasDisplayLabel for a human readable name by which a concept is publicly known
in its scheme.

vmf:HasDefinition for the human readable definition or description of a concept in its
scheme.

vmf:HasComment for a human readable comment on the concept which may expand
or exemplify the definition.

vmf:HasCode For a short code used to identify a concept in its scheme.

For example:

vmf:Derivation vmf:HasDefinition “A Creation made, in whole or part, from one or more existing
Works.”

2.4 The VMF data model

A requirement of the “hub and spoke” mapping approach is that the data model of the “hub”
must be semantically rich enough to represent the meanings of all terms in the mapped
vocabularies, and easily extensible to add new concepts as required. Because of the volume
and complexity of mappings, without a clear model the VMF is likely to become unintelligible
and unmaintainable.

2.4.1 Model antecedents

The matrix structure uses a standard model of formal ontology suited for logical inference
based predominantly on attribute inheritance5.

The non-formal or ‘intensional’ semantic concepts in the VMF matrix are based on Rightscom’s
COA6 metamodel, which in turn is a development of the <indecs> metadata framework7, and
shares many common assumptions with FRBR and the CIDOC CRM. The COA model is used to
support the maintenance of the DDEX standard, and indecs/COA has been the underlying

5 John Sowa’s website provides a useful and readable introduction to ontology and an example of a matrix model, see

http://www.jfsowa.com/ontology/index.htm
6 Contextual Ontology Architecture. The relevant parts of COA on which the matrix is based are all made explicit in this document as
the vmf “concept family” model.
7

 http://en.wikipedia.org/wiki/Indecs_Content_Model

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

9

model for MPEG21 RDD, IDF metadata and recently for the ONIX for Publication Licenses
standard8.

The COA model is appropriate because, in a task that is inherently very complex, it provides
relative simplicity9. The semantic relations within the VMF matrix are (compared with other
large ontologies) clarified by the use of the COA’s contextual model and its resulting concept
families.

2.4.2 Classes, Individuals and Relators

Vocabulary terms to be mapped in the matrix are classes, individuals or relators.

The majority of mapped terms are classes (or categories or types) by which entities are
classified according to one or more of their attributes (for example, Audiovisual Work, Person,
Screensaver, Translator, Concordance, Erratum, MusicalArrangement, Payee, Owner, JPEG) .

A relatively small number of vocabularies deal with individual entities rather than members of
classes. Most common of these are subject vocabularies which may include individuals such as
William Shakespeare, the Eiffel Tower, the planet Jupiter or the French Revolution. The VMF
matrix does not include individuals at this stage but can be extended to do so.

The remaining terms are relators describing relationships between two different resources or
parties (for example, “is version of”, “is author of”, “is affiliate of”), and it is this requirement
which presents the most interesting challenge, and for which the methodology of the concept
family, explained in section 2.5, below is particularly well suited.

2.4.3 Relationships in the matrix

In the conventional way, classes are represented in a hierarchical matrix in which attributes
may be inherited from one or more parent classes to build up more complex classes in the
process of specialization. For example, the class of “Work” may be specialized to “VisualWork”
and “InteractiveWork”, and these two may be combined into the more specialized
“InteractiveVisualWork”. This is represented in the matrix as:

vmf:InteractiveWork rdfs:subClassOf vmf:Work
vmf:VisualWork rdfs:subClassOf vmf:Work
vmf:InteractiveVisualWork rdfs:subClassOf vmf:InteractiveWork
vmf:InteractiveVisualWork rdfs:subClassOf vmf:VisualWork

This matrix of specialized classes may be extended to any level of granularity or complexity to
support the particular terms to be mapped. Other logical relations (see Table 1) may be
introduced to provide more precise definition and validation of the matrix. Statements of this
kind are typically known as the axioms of the ontology.

2.4.4 Defining relators

There has been a growing trend towards the use of relators in metadata schemes: evidence for
this is seen in the fact that FRBR, RDA and the CIDOC CRM are primarily built on relationships,
and in the increasing use of the relationship-based RDF.

In fact, relators have always been widespread in metadata, but until recently have often been
disguised as categories or roles. For example, all of the substantial contributor role vocabularies
in schemes such as ONIX, MARC and DDEX are actually relators describing the relationship
between the resource being described and some contributing party. The main reason for this
sometimes superficial confusion lies in naming. For example, the ONIX contributor list (code
list 17), which uses a mixture of role terms such as “Actor” and relator terms such as “Abridged

8

 http://www.editeur.org/21/ONIX-PL/
9
 Following Einstein: “Things should be made as simple as possible, but not simpler”.

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

10

by”, demonstrates this. “Actor” in this vocabulary is in fact a relator meaning “is actor in” (in
context it is not saying that John Smith is an actor by profession, only that he acted in this
particular resource). As a further example of the “hidden” prevalence of relators, of the Dublin
Core 15 terms, only six describe wholly-owned attributes (title, identifier, description, type,
format and coverage) while nine are relators from the resource to other independent entities
(creator, contributor, publisher, source, relation, rights, date10, language and subject, although
the rights element is normally used in practise as a description and does not point to a
particular entity). Metadata statements are increasingly recognized as being bi-directional:
Shakespeare is metadata about Hamlet, and Hamlet is metadata about Shakespeare, depending
on the starting point of view of any particular scheme, and the role of the relator in
characterising relationships between entities is of course fundamental.

2.4.5 Relators and Events

Relationships between Classes (and therefore the Relators which name them) exist as a
conequence of the events that bring entities into association with one another. An Event
contains one or more entities playing a particular role (for example, a creator and a creation in
a creating event). The relationships between theses classes (such as is creator of or has
creator) are described by Relators. There is clearly a family relationship between these terms
create, creation, creating event and Relators such as is creator of and has creator, based on the
concept embodied in the verb create. The formal expression of these relationships in a
concept family is the basis of the VMF data model.

Events may sometimes be expressed in a single relationship – for example, the simplest
creating event only requires one creator and one creation, and so the single relationship “is
creator of” (as in “Shakespeare is creator of Hamlet”) may convey the full meaning of an event
required by a particular metadata scheme.

However, other events involve three or more entities. For example, a deriving event (such as
adapting or translating a resource) must have at least one agent (a “deriver” in VMF), at least
one resource from which the derivation is made (a “source”), and at least one output (a
“derivation”). This one event therefore gives rise to at least three relationships, and if they are
described in both directions, then to six relators:

1. (deriver) is deriver of (derivation)
2. (derivation) is derived by (deriver)
3. (deriver) is deriver from (source)
4. (source) is derived from by (deriver)
5. (source) is source of (derivation)
6. (derivation) is derivation of (source)

Each of these relators may occur in some metadata scheme or other (often with a different
name) and may require mapping to VMF (relators 1, 5 and 6 are the most common from this
particular example).

In addition, where there are multiple derivers, sources or derivations in a particular event (such
as the compilation of a series of CDs from a variety of tracks), there are further relationships:

7. (deriver) has co-deriver (deriver)
8. (derivation) has co-derivation (derivation)
9. (source) has co-source (source)

The addition then of a single further type of entity to the event (say, a “deriving tool” such as a
computer) results in an arithmetic increase in the number of possible relationships which might
be defined in some metadata scheme. An event with three role-playing classes has 9 possible

10 Dates and times are almost universally regarded as attributes, but of course a time (whether a point in time or a period) is an
independent entity in relation to which many things happen and exist.

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

11

relators, with four role-playing classes, with five classes 25, and so on. Each relator has a direct
relationship with two classes, but an indirect relationship with every other one in the event, as
it is impossible to adequately represent the concept (say) of a derivation without including the
concepts of both a deriver and a source.

In the above example, thirteen terms (Derive, Deriver, Source, Derivation and nine relators) are
all related through the single concept of deriving (“to make a new Creation from an existing
Creation”). At least six of these terms (and large numbers of their children) appear regularly in
vocabularies of different metadata schemes, and any of the others might occur occasionally.
The VMF method of mapping relates all of these terms to their core concept, making it simpler
to create, maintain and use in comparison to a conventional “flat” mapping between schemas
which lacks a simple underlying model. The structure of the concept family enables this. This
approach can be applied to states as well as events (a State in the VMF is a static multi-entity
relationship such as rights ownership or whole-part relationships). Events and states are
collectively called contexts11 in the VMF.

So a family of classes and relators can be defined around a single ‘verb’ concept, known in VMF
as a Concept Family12. The VMF matrix is built around Concept Families of terms, each based
on a single verb, to achieve a ‘simple as possible’ and extensible framework for the mapping of
large numbers of complex and at times highly granular terms.

2.5 Structure of a Concept Family

The VMF ontology is then a matrix of Concept Families organized within a hierarchy. The
detailed structure of a Concept Family is given in the table below. Concept Families contain a
small number of specialized types of concept:

Table 3: Concept Family components

Concept Type Logical

type

no per

family
Description

Verb or Context Type Class 1 A context in which some activity happens or some
state persists

Agent Class 0-n An Entity playing an active role in the context.

Patient Class 0-n An Entity playing a passive role in the context.

Agent_Agent Relator 0-n A relator between an Agent and another Agent
(only occurs if there can be at least two Agents in
the ContextType).

Agent_Patient Relator 0-n A relator between an Agent and a Patient (only
occurs if there are at least one of each).

Patient_Agent Relator 0-n A relator between a Patient and an Agent (only
occurs if there are at least one of each).

Patient_Patient Relator 0-n A relator between a Patient and another Patient
(only occurs if there can be at least two Patients in
the ContextType).

Example of the Concept Family for “Adapt”:

Table 4: Concept Family example

Concept Type no Term name Definition

Verb or ContextType 1 Adapt / AdaptingEvent To Derive an Adaptation.

Agent 1-n Adapter A Deriver of an Adaptation.

Patient 1-n Adaptation A Derivation made by changing an

existing Creation.

11 A Context in COA is actually “an intersection of time and place”, and types of events and states are defined by the behaviour of verbs
within a context. At this point time and place are not major issues for VMF, and so the VMF uses a “cut-down” version of the Context
Model, which can be expanded in future if the need arises.
12

 Also known in other projects as a “Context Family”

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

12

1-n SourceOfAdaptation The Source of an Adaptation.

Agent_Agent 0-n Adapter_Adapter The relator from one Adaptor to
another in an Adapt Context .

1-n Adapter_Adaptation The relator from an Adaptor to an
Adaptation in an Adapt Context.

Agent_Patient

1-n Adapter_SourceOfAdapt
ation

The relator from an Adaptor to a
SourceOf Adaptation in an Adapt
Context.

1-n Adaptation_Adapter The relator from an Adaptation to an
Adaptor in an Adapt Context.

Patient_Agent

1-n SourceOfAdaptation_Ada
pter

The relator from a SourceOfAdaptation
to an Adaptor in an Adapt Context.

1-n Adaptation_SourceOfAda
ptation

The relator from an Adaptation to a
SourceOf Adaptation in an Adapt
Context.

0-n

Adaptation_Adaptation The relator from one Adaptation to
another in an Adapt Context.

Patient_Patient

0-n SourceOfAdaptation_
SourceOfAdaptation

The relator from a SourceOfAdaptation
to another in an Adapt Context.

Notes on Table 4
1. In definitions, terms with capital initial are terms already defined in the ontology, usually as
parents of the terms being defined.
2. Most meaning is inherited from parents: in this example, the parent family is Derive, and the
meanings of Deriver, Derivation, Source etc are inherited from there.
3. The specialized meaning of a family is typically described in the definition of only one term
(in this case, Adaptation – highlighted in bold). The other definitions are generally formulaic
and reference that term.

The families themselves are linked in hierarchies, so that each term automatically knows its
parents and children. For example, as Adapt is a child of Derive, then the Adapt family must
contain a “child” member for each member of the Derive family: Adaptor is a child of Deriver,
Adaptation is a child of Derivation, and SourceOfAdaptation is a child of Source.

2.6 Building the matrix

This section describes the practical steps involved in adding to the VMF matrix. When a new
concept is identified as being required to support a mapping, the appropriate new verb is
identified and related to its parent. If necessary, two or more families may be added at the
same time to create the necessary conceptual hierarchy.

For example, because the concept of “translation” exists in a vocabulary to be mapped,
“Translate” has been added as a subclass of “AdaptWords”, meaning to adapt words by putting
them into a different language. Once the verb concept is created, the Agent and Resource roles
(in this case named “Translator” and “Translation”) are named and added manually. The names
and definitions of these terms are created manually, but their semantics are already fully
derived through the semantics of “Translate” and the matrix inheritance model, so after
definition of the concept and positioning it in the matrix, the process is routine.

The remaining terms and relationships are then generated automatically, including the names
of all the relators, and all of the standard formal ontological relationships including parent
classes and relators. For a concept such as Translate, that will include more than 50 ontological
relationships. In addition, some more specific ontological relationships (see Logical axioms in
Table 1) may be added manually in certain cases that support them.

The VMF matrix is then ready for mapping to any form of the concept “Translate” in any
vocabulary, or for specializing it to a new concept family such as “TranslateSubtitles” or
“TranslateToFrench” as needed. Event concepts may be as granular as required by the
vocabulary being mapped. As typical examples, the ONIX product form vocabulary requires the
concepts “EncodeBetamaxVideocassetteInSECAM” and “FixRolledSheetMap”, each of which

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

13

inherits meaning from a range of more general concepts within the matrix (fixing, encoding,
Betamax, Videocassette, maps, Sheet carriers, rolled sheets, SECAM). Some vocabularies
require concepts of much greater granularity.

The methodology therefore allows for the rapid generation of large numbers of formally related
terms which are “nodes” in the matrix, any of which may be mapped to a term in an external
vocabulary as required, thereby bringing that term fully into the matrix.

2.7 Concept Families for attributes

Attributes are added to the matrix by being represented in a new class which is a member of a
family. For example, each of the RDA ONIX categories is represented as a class, so that the
attributes of being (say) “Interactive” and “NonInteractive” are represented as classes of
“InteractiveCreation” and “NonInteractiveCreation”, which then become parents of any other
classes sharing those attributes.

2.8 Upper ontology

The “upper ontology” of the matrix (that is, the high level terms on which it is based) is
adapted directly from verbs in Rightscom’s COA ontology, representing commonplace concepts.
Note that there is no formal distinction between the “upper ontology” and the rest of the
matrix: the distinction is merely an arbitrary convenience: new primitive semantics are
introduced and mapped as required at whatever level.

2.9 Specialization of concepts
A concept is specialized, and a new family therefore created, in a number of ways. The main
ones are given in Table 5:

Table 5: methods of specialization

Primitive Semantics (see
also 2.10)

A new concept is introduced into the ontology and combined with existing
concepts. For example, the verb Make adds the concept of “bringing
something into existence” to the concept of Do.

Intersection Two or more existing concepts are combined to form a new one. For
example, CreateWords and Adapt are combined into AdaptWords.

Union A concept is defined as being one out of two more other concepts. For
example TakeFilmOrPhotograph is the union of TakeFilm and
TakePhotograph.

Disjunction A concept is defined as being disjoint with another with a common parent
(that is, one individual cannot belong to both classes). For example,
OriginalWork is disjoint with DerivedWork.

Cardinality Constraint A concept is specialized because of the number of occurrences of a role
within it. For example, “Act” must have at least an Agent or a Patient, but
not necessarily both. “Do” is a specialization of Act which must have at
least one Agent.

Antecedent A concept defined by the state which arises as a consequence of it.

Consequent A concept defined by the event which causes it.

Conditional Rule (see also
2.13)

A concept defined with some other conditional rule, including measurement,
temporality or modality. At this stage conditional rules are not explicit in the
ontology but will be added in the next stage of development.

Dependent Role (see also
2.14)

A concept is specialized because one of its Resources has

The method of specialization of each concept is shown in the ontology using the relator
vmf:HasDifferentiae following the term ID (“differentiae” being the classical term for the
point of specialization). For example:

 vmf:Derivation vmf:HasDifferentiae vmf:PrimitiveSemantics

2.10 Primitive semantics

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

14

The specialization methods used in VMF are common in ontologies and taxonomies. Behind
them lies the principle that a new element of meaning (called primitive semantics in the
VMF) should be introduced only once into the matrix, and then inherited (or otherwise logically
connected with axioms) by every concept which includes or otherwise relies upon it. In the
example above, the concept of being “visual” (that is, being perceivable by the sense of sight)
is not introduced into the matrix with the term “VisualWork”, because many things other than
Works may be visual, so there is a simpler concept of a “SeeableResource” at a higher point in
the matrix, from which “VisualWork” inherits this concept.

Primitive semantics may be very general (such as the concepts of sequential time, animate life,
or of compiling a new creation from parts of existing ones) or they may be very specific (such
as the a baby grand piano, the HTML markup language or a Pantone colour reference).
Primitive semantics are concepts that must be agreed (explicitly or implicitly) by those who are
agreeing to any mapping. For example, if onix:Librettist and marc21:Librettist are mapped as
equivalent to vmf:Librettist in the VMF, it is because it is assumed that the inherited concepts
that make up vmf:Librettist (which include opera, words, music and creating) are shared by
those three schemes. Primitive semantics normally form part of the definition of a term, but in
VMF they are also identified explicitly using the relator vmf:HasPrimitiveSemantics. For
example:

vmf:Derivation vmf:HasPrimitiveSemantics “Derivation: A Creation can be made from a pre-
existing Work.”

The reason for this approach is that a user of VMF should be able to verify that they agree with
the primitive semantics included without needing to understand the matrix that distributes
them.

2.11 Concept Family axioms

Each Concept Family is itself identified as a concept (for example, “Adapt_CF”). VMF uses a
small set of relators (shown in Table 6) to express the relationships between the different
elements and their Concept Family.

Table 6: Concept Family relators

vmf:IsContextInCF

to relate a Verb to its Concept Family (for example vmf:Adapt
vmf:IsContextInCF vmf:Adapt_CF)

vmf:IsResourceInCF

to relate a Resource Role (either an Agent or Patient) and its
Concept Family (for example vmf:Adaptation vmf:IsResourceInCF
vmf:Adapt_CF)

vmf:IsRelatorInCF

to relate a Relator and its Concept Family (for example
vmf:Adaptation_Adaptor vmf:IsRelatorInCF vmf:Adapt_CF)

These relators enable relationships to be established between different roles in a Context.

2.12 Conditional Rules
At this point all axioms are expressed as class-to-class relationships: that is, there is no
rulebase in which conditional rules containing rdf:Type statements are made about variables
representing instances of a Class. This means that certain ontological relationships are not yet
logically explicit in the matrix. These relationships are currently expressed either through the
Concept Family axioms (2.11), or else as primitive semantics (2.10), or else informally in
comments. For the purpose of mapping vocabulary terms into the matrix, the class hierarchy is
adequate, but the intention is to introduce a rulebase in the next stage of the VMF to maximise
the effectiveness of the production of scheme-to-scheme mappings.

2.13 Dependent Roles
This section describes how the matrix currently deals with an important semantic issue:
inherited attributes of a class which fall outside of the immediate context, particularly fixed
type attributes. A fixed type (sometimes known as a “natural type”) is a static category to

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

15

which something belongs for a period of its existence (often for the whole of its existence), in
contrast to a role which it only plays in a particular context. For example, John Smith may have
a fixed type of “Human” all his life, but plays a role of “Composer” only at those times when he
is composing music.

Fixed types are handled somewhat unusually in VMF. Because all classes are defined in verb-
based contexts, a fixed type is identified in the event in which it came into being, and it then
persists in the subsequent state which follows the event. For example, a MusicalWork comes
into being in a Compose event; once it is created, it remains permanently in the state of being a
MusicalWork, but is no longer being created.

When defining a concept in the matrix it is necessary to know whether attributes inherited by
the classes in the concept family are inherited from an event in the past, present or future. For
example, if a new MusicalWork (say, an Arrangement) is derived from an existing one (its
Source), then it is true that both Source and Arrangement are types of MusicalWork, but with a
critical difference: they do not become Works in the same Event. In the Arrange event, only the
Arrangement is coming into existence: the Source came into existence in an earlier Compose
event. If both are simply defined as being a subclass of Work that would ignore the temporal
distinctions and destroy any hope of accurate inference - for example, some types of query
would infer that both the Arrangement and its Source were created by the Arranger, which
would be incorrect.

There are a variety of ways in which these temporal constraints may be computed. At this stage
the matrix simply records any “non-family” inheritance relationship with one or these specialized
relators:

Table 7: Dependent Role relators

vmf:HasPastRole A role in a Context which ended before the current one
began.

vmf:HasConcurrentRole A role in a Context which occurs throughout or within the
current one.

vmf:HasFutureRole A role in a Context which starts at a time following the end of
current one.

vmf:HasPastOrConcurrentRole A role in a past or concurrent context.

vmf:HasPastOrFutureRole A role in a past or future context.

vmf:HasConcurrentOrFutureRole A role in a concurrent or future context.

vmf:HasAnytimeRole A role in a context which may occur at any time.

For example:

 vmf:Source vmf:HasPastRole vmf:Work

This is used in contrast to:

 vmf:Arrangement rdfs:subClassOf vmf:Work

These relators may be transformed into explicit conditional rules in future processing of the
matrix.

2.14 Displaced relationships
Another important type of conditional rule that is required is to deal with displaced
relationships. These are relationships which create “short cuts” between two Entities which
are more accurately related through a chain of two or more relationships. For example, many
metadata schemes have relators which associate a creator of a Work with the creation of a later
Adaptation or Manifestation of that work: for example, the writer of a novel may be linked as
the “author of original work” to a later translation, or the composer of a piece of music may be
linked directly to a recording of a performance. These relators are expressed in the matrix (this

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

16

particular example appears in the matrix as the concept “CreateSource”) but require rules which
allow them to be transformed into their fuller expression.

2.15 Membership of vocabularies
The relationship between a term and the vocabulary to which it belongs is described with the
relator vmf:IsInVocabulary. For example

onix:CodeList17_By_author vmf:IsInVocabulary onixAVS:CodeList17.

2.16 Concept names
Human-readable names for concepts in VMF follow conventions and, in the case of relators,
automated rules. This makes it easier to create and find them.

Contexts are named with the infinitive form of an English language verb (for example Create or
CompileWords). Agent and Resource roles are nouns (for example, Creator, Creation).

Relators are named by combining the names of the two related concepts, separated by an
underscore (for example, Creator_Creation, CompiledWords_WordsCompiler). This results in
some apparent redundancy in the name, as the same semantic concept is implied on both sides
of the relator, but because the names are not intended for public use this is not an issue.

Concepts in the same family almost invariably retain the same linguistic ‘stem’ (for example,
Create, Creator, Creation).

2.17 QA and validation

The matrix may be validated for logical consistency using OWL-DL reasoners. Mapping is the
means by which the matrix is extended and corrected, and mapping a new term forces the
scrutiny and validation of the existing matrix. Mapping may result in the addition of new
“intermediate” or “leaf” concepts (a leaf concept is one with no children). Because the most
useful terms are most often scrutinized, this is an effective method of QA. Ultimately the
accuracy of the matrix will be tested by its results in terms of scheme-to-scheme mappings.

2.18 Producing the matrix output

The RDF database is generated at present by applying Excel macros to the VMF spreadsheet
containing and producing triples in RDF TTL (“Turtle”) syntax. An additional process applying a
SPARQL construct rule is required for completing the rdfs:subPropertyOf hierarchies.

In the compilation process the open source Protégé editor was used for reviewing the ontology.
Note that the standard visualization plug-in has specific limitations for VMF: it enables the
viewer to review normal subclass hierarchies and mappings but not the concept family
groupings which are key to the matrix.

An example of the RDF triples currently generated for the Concept Family “vmf:Write_CF”,
including mappings of several terms from different schemes, is shown below. A tabular version
of the same Concept Family is shown in Table 8 following.

classes
vmf:CreateLexicalWork rdfs:subClassOf vmf:CreateWork.
vmf:CreateLexicalWork vmf:HasReferenceName "CreateLexicalWork".
vmf:CreateLexicalWork vmf:HasSynonym "WordsCreatingEvent".
vmf:CreateLexicalWork vmf:IsContextInCF vmf:CreateLexicalWork_CF.
vmf:CreateLexicalWork_CF vmf:HasDefinition "The ConceptFamily of CreateLexicalWork".
vmf:CreateLexicalWork_CF vmf:HasReferenceName "CreateLexicalWork_CF".
vmf:CreatorOfLexicalWork rdfs:subClassOf vmf:CreatorOfWork.
vmf:CreatorOfLexicalWork vmf:HasReferenceName "CreatorOfLexicalWork".
vmf:CreatorOfLexicalWork vmf:IsAgentInCF vmf:CreateLexicalWork_CF.
vmf:LexicalWork rdfs:subClassOf vmf:Work.
vmf:LexicalWork vmf:HasReferenceName "LexicalWork".

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

17

vmf:LexicalWork vmf:IsResourceInCF vmf:CreateLexicalWork_CF.

relators
vmf:CreateLexicalWork_CreatorOfLexicalWork rdfs:domain vmf:CreateLexicalWork.
vmf:CreateLexicalWork_CreatorOfLexicalWork rdfs:range vmf:CreatorOfLexicalWork.
vmf:CreateLexicalWork_CreatorOfLexicalWork rdfs:subPropertyOf vmf:CreateWork_CreatorOfWork.
vmf:CreateLexicalWork_CreatorOfLexicalWork vmf:HasReferenceName
"CreateLexicalWork_CreatorOfLexicalWork".
vmf:CreateLexicalWork_CreatorOfLexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.
vmf:CreateLexicalWork_LexicalWork rdfs:domain vmf:CreateLexicalWork.
vmf:CreateLexicalWork_LexicalWork rdfs:range vmf:LexicalWork.
vmf:CreateLexicalWork_LexicalWork rdfs:subPropertyOf vmf:CreateWork_Work.
vmf:CreateLexicalWork_LexicalWork vmf:HasReferenceName "CreateLexicalWork_LexicalWork".
vmf:CreateLexicalWork_LexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.
vmf:CreatorOfLexicalWork_CreateLexicalWork owl:inverseOf vmf:CreateLexicalWork_CreatorOfLexicalWork.
vmf:CreatorOfLexicalWork_CreateLexicalWork rdfs:domain vmf:CreatorOfLexicalWork.
vmf:CreatorOfLexicalWork_CreateLexicalWork rdfs:range vmf:CreateLexicalWork.
vmf:CreatorOfLexicalWork_CreateLexicalWork rdfs:subPropertyOf vmf:CreatorOfWork_CreateWork.
vmf:CreatorOfLexicalWork_CreateLexicalWork vmf:HasReferenceName
"CreatorOfLexicalWork_CreateLexicalWork".
vmf:CreatorOfLexicalWork_CreateLexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.
vmf:CreatorOfLexicalWork_CreatorOfLexicalWork owl:inverseOf vmf:CreatorOfLexicalWork_CreatorOfLexicalWork.
vmf:CreatorOfLexicalWork_CreatorOfLexicalWork rdfs:domain vmf:CreatorOfLexicalWork.
vmf:CreatorOfLexicalWork_CreatorOfLexicalWork rdfs:range vmf:CreatorOfLexicalWork.
vmf:CreatorOfLexicalWork_CreatorOfLexicalWork rdfs:subPropertyOf vmf:CreatorOfWork_CreatorOfWork.
vmf:CreatorOfLexicalWork_CreatorOfLexicalWork vmf:HasReferenceName
"CreatorOfLexicalWork_CreatorOfLexicalWork".
vmf:CreatorOfLexicalWork_CreatorOfLexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.
vmf:CreatorOfLexicalWork_LexicalWork owl:inverseOf vmf:LexicalWork_CreatorOfLexicalWork.
vmf:CreatorOfLexicalWork_LexicalWork rdfs:domain vmf:CreatorOfLexicalWork.
vmf:CreatorOfLexicalWork_LexicalWork rdfs:range vmf:LexicalWork.
vmf:CreatorOfLexicalWork_LexicalWork rdfs:subPropertyOf vmf:CreatorOfWork_Work.
vmf:CreatorOfLexicalWork_LexicalWork vmf:HasReferenceName "CreatorOfLexicalWork_LexicalWork".
vmf:CreatorOfLexicalWork_LexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.
vmf:LexicalWork_CreateLexicalWork owl:inverseOf vmf:CreateLexicalWork_LexicalWork.
vmf:LexicalWork_CreateLexicalWork rdfs:domain vmf:LexicalWork.
vmf:LexicalWork_CreateLexicalWork rdfs:range vmf:CreateLexicalWork.
vmf:LexicalWork_CreateLexicalWork rdfs:subPropertyOf vmf:Work_CreateWork.
vmf:LexicalWork_CreateLexicalWork vmf:HasReferenceName "LexicalWork_CreateLexicalWork".
vmf:LexicalWork_CreateLexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.
vmf:LexicalWork_CreatorOfLexicalWork rdfs:domain vmf:LexicalWork.
vmf:LexicalWork_CreatorOfLexicalWork rdfs:range vmf:CreatorOfLexicalWork.
vmf:LexicalWork_CreatorOfLexicalWork rdfs:subPropertyOf vmf:Work_CreatorOfWork.
vmf:LexicalWork_CreatorOfLexicalWork vmf:HasReferenceName "LexicalWork_CreatorOfLexicalWork".
vmf:LexicalWork_CreatorOfLexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.
vmf:LexicalWork_LexicalWork owl:inverseOf vmf:LexicalWork_LexicalWork.
vmf:LexicalWork_LexicalWork rdfs:domain vmf:LexicalWork.
vmf:LexicalWork_LexicalWork rdfs:range vmf:LexicalWork.
vmf:LexicalWork_LexicalWork rdfs:subPropertyOf vmf:Work_Work.
vmf:LexicalWork_LexicalWork vmf:HasReferenceName "LexicalWork_LexicalWork".
vmf:LexicalWork_LexicalWork vmf:IsRelatorInCF vmf:CreateLexicalWork_CF.

definitions, primitive semantics and differentiae
vmf:CreateLexicalWork vmf:HasDefinition "To Create a LexicalWork.".
vmf:CreateLexicalWork vmf:HasDifferentiae "Rule”.
vmf:CreatorOfLexicalWork vmf:HasDefinition "A Creator of a LexicalWork.".
vmf:LexicalWork vmf:HasDefinition "A Work which may be realized in language.".

mappings
ddex:MusicalWorkContributorRole_Author owl:equivalentProperty vmf:LexicalWork_CreatorOfLexicalWork.
ddex:MusicalWorkContributorRole_Author rdfs:subPropertyOf vmf:DdexTerm.
ddex:MusicalWorkContributorRole_Author vmf:HasDescription "A Creator of written or spoken words which form
part of a Resource.".
ddex:MusicalWorkContributorRole_Author vmf:IsInVocabulary ddexC:MusicalWorkContributorRole.

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

18

onix:CodeList17_By__author_ owl:equivalentProperty vmf:LexicalWork_CreatorOfLexicalWork.
onix:CodeList17_By__author_ rdfs:subPropertyOf vmf:OnixTerm.
onix:CodeList17_By__author_ vmf:HasAnnotation "Author of a textual work".
onix:CodeList17_By__author_ vmf:HasCode "A01".
onix:CodeList17_By__author_ vmf:HasDescription "By (author)".
onix:CodeList17_By__author_ vmf:IsInVocabulary onixAVS:CodeList17.
rda:Creator-WorkRelator_author owl:equivalentProperty vmf:LexicalWork_CreatorOfLexicalWork.
rda:Creator-WorkRelator_author rdfs:subPropertyOf vmf:RdaTerm.
rda:Creator-WorkRelator_author vmf:HasDescription "A person, family, or corporate body responsible for creating
a work that is primarily textual in content, regardless of media type (e.g., printed text, spoken word, electronic
text, tactile text) or genre (e.g., poems, novels, screenplays, blogs). Use also for persons, etc., creating a new
work by paraphrasing, rewriting, or adapting works by another creator such that the modification has
substantially changed the nature and content of the original or changed the medium of expression.".
rda:Creator-WorkRelator_author vmf:IsInVocabulary rdaAVS:Creator-WorkRelator.
rdaonix:Character_language owl:equivalentClass vmf:LexicalWork.
rdaonix:Character_language rdfs:subClassOf vmf:RdaonixTerm.
rdaonix:Character_language vmf:HasDescription "Content expressed in human or machine-readable language.".
rdaonix:Character_language vmf:IsInVocabulary rdaonixAVS:Character.

Tabular representation of the above.

Table 8: Tabular representation of Concept Family example

Concept Family for CreateLexicalWork

synonym WordsCreatingEvent

parent CreateWork

definition To Create a LexicalWork.

differentiae 1. Primitive semantics

Verb CreateLexicalWork

primitive
semantics

1. Language: concepts may be expressed in
words.

parent CreatorOfWork Agent Role CreatorOfLexicalWork

definition A Creator of the lexical elements of a LexicalWork.

parent Work Resource Role LexicalWork

definition A Work expressed in language.

domain CreateLexicalWork

range CreatorOfLexicalWork

reciprocal CreatorOfLexicalWork_CreateLexicalWork

CreateLexicalWork_Cre
atorOfLexicalWork

parent CreateWork_CreatorOfWork

domain CreateLexicalWork

range LexicalWork

reciprocal LexicalWork_CreateLexicalWork

CreateLexicalWork_Lex
icalWork

parent CreateWork_Work

domain CreatorOfLexicalWork

range CreatorOfLexicalWork

reciprocal CreatorOfLexicalWork_CreatorOfLexicalWork

CreatorOfLexicalWork_
CreatorOfLexicalWork

parent CreatorOfWork_CreatorOfWork

domain CreatorOfLexicalWork

range LexicalWork

reciprocal LexicalWork_CreatorOfLexicalWork

CreatorOfLexicalWork_
LexicalWork

parent CreatorOfWork_Work

domain CreatorOfLexicalWork

range CreateLexicalWork

Relators

CreatorOfLexicalWork_
CreateLexicalWork

reciprocal CreateLexicalWork_CreatorOfLexicalWork

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

19

parent CreatorOfWork_CreateWork

domain LexicalWork

range CreatorOfLexicalWork

reciprocal CreatorOfLexicalWork_LexicalWork

LexicalWork_CreatorOf
LexicalWork

parent Work_CreatorOfWork

domain LexicalWork

range LexicalWork

reciprocal LexicalWork_LexicalWork

LexicalWork_LexicalWo
rk

parent Work_Work

domain LexicalWork

range CreateLexicalWork

reciprocal CreateLexicalWork_LexicalWork

LexicalWork_CreateLex
icalWork

parent Work_Create

same as LexicalWork

definition Content expressed in human or machine-readable
language.

rdaonix:Character_lang
uage

vocabulary rdaonixAVS:Character

same as LexicalWork_CreatorOfLexicalWork

display label author

definition A person, family, or corporate body responsible for
creating a work that is primarily textual in content,
regardless of media type (e.g., printed text,
spoken word, electronic text, tactile text) or genre
(e.g., poems, novels, screenplays, blogs). Use also
for persons, etc., creating a new work by
paraphrasing, rewriting, or adapting works by
another creator such that the modification has
substantially changed the nature and content of
the original or changed the medium of expression.

rda:Creator-
WorkRelators_author

vocabulary rdaAVS:Creator-WorkRelators

same as LexicalWork_CreatorOfLexicalWork

display label Author

definition A Creator of written or spoken words which form
part of a Resource.

ddex:MusicalWorkContr
ibutorRole_Author

vocabulary ddexC:MusicalWorkContributorRole.

same as LexicalWork_CreatorOfLexicalWork

display label By (author)

code A01

definition Author of a textual work.

Mappings

onix:CodeList17_By_au
thor

vocabulary onixAVS:CodeList17

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

20

3. Producing scheme to scheme mappings
This is the proposed task of the next stage of the project. As a first step, some SPARQL queries
have been created and an illustrative mapping is provided in section 3.1.

3.1 Example mappings

This section shows candidate mappings between Onix Code List 17 and the Marc 21
“Relationship” vocabularies. The results are partial as not all terms from these two large
vocabularies have yet been mapped to the VMF matrix. The SPARQL queries used to derive the
mappings are shown following.

Exact equivalence mappings are shown in bold and “best fit” options in medium font.

Marc 21 Relationship Onix Code List 17

Actor same as Actor

Actor parent Performed by

Adapter child Dramatized by

Adapter parent Adapted by

Adapter sibling Abridged by

Adapter sibling Other adaptation by

Adapter sibling Translated by

Architect parent Designed by

Architect sibling Cover design or artwork by

Arranger same as Arranged by music

Arranger parent By composer

Arranger sibling Adapted by

Artist same as By artist

Artist sibling Drawings by

Author child By author

Author child By composer

Author child Software written by

Author sibling From an idea by

Author of introduction etc child Introduction by

Author of introduction etc sibling Commentaries by

Author of introduction etc sibling Memoir by

Author of introduction etc sibling Notes by

Author of introduction etc sibling Summary by

Author of screenplay same as Screenplay by

Author of screenplay sibling Dramatized by

Cartographer same as Maps by

Cartographer parent By author

Cartographer sibling Adapted by

Cartographer sibling Original author

Cartographer sibling Text by

Commentator same as Commentator

Commentator for written text sibling Commentaries by

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

21

Compiler same as Compiled by

Compiler child Other compilation by

Composer same as By composer

Composer child Arranged by music

Composer sibling By author

Composer sibling Software written by

Conceptor same as From an idea by

Conductor same as Conductor

Contributor same as Contributions by

Contributor child Producer

Contributor parent Created by

Contributor sibling Director

Contributor sibling Edited by

Costume designer parent Designed by

Costume designer sibling Cover design or artwork by

Cover designer parent Designed by

Cover designer sibling Cover design or artwork by

Creator same as Created by

Creator child Contributions by

Creator child Director

Creator child Edited by

Dancer same as Dancer

Designer same as Designed by

Designer child Cover design or artwork by

Director same as Director

Director child Other direction by

Director parent Created by

Director sibling Contributions by

Director sibling Edited by

Draftsman child Maps by

Draftsman sibling Designed by

Editor same as Edited by

Editor parent Created by

Editor sibling Contributions by

Editor sibling Director

Illustrator same as Illustrated by

Illustrator parent Drawings by

Illustrator sibling Text by

Instrumentalist child Instrumental soloist

Instrumentalist sibling Performed by orchestra band ensemble

Landscape architect parent Designed by

Landscape architect sibling Cover design or artwork by

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

22

Librettist same as Libretto by

Librettist sibling Lyrics by

Lyricist same as Lyrics by

Lyricist child Book and lyrics by

Lyricist sibling Libretto by

Musical director child Conductor

Musical director sibling Conductor

Musician child Performed by orchestra band ensemble

Narrator same as Narrator

Narrator sibling Read by

Originator sibling By author

Originator sibling By composer

Originator sibling Software written by

Performer same as Performed by

Performer child Actor

Photographer child Filmed photographed by

Programmer parent Software written by

Publisher child Performed by

Reporter child General rapporteur

Reporter parent By author

Reporter sibling Adapted by

Reporter sibling Maps by

Reporter sibling Original author

Reporter sibling Text by

Singer child Vocal soloist

Singer sibling Performed by orchestra band ensemble

Speaker child Narrator

Speaker child Read by

Storyteller sibling Narrator

Storyteller sibling Read by

Transcriber sibling Compiled by

Translator same as Translated by

Translator child Edited and translated by

Translator parent Adapted by

Translator sibling Abridged by

Translator sibling Other adaptation by

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

23

Onix Code List 17 Marc 21 Relationship

Abridged by sibling Adapter
Abridged by sibling Translator

Actor same as Actor

Actor parent Performer

Adapted by child Adapter
Adapted by child Translator
Adapted by sibling Arranger
Adapted by sibling Cartographer
Adapted by sibling Reporter

Arranged by music same as Arranger

Arranged by music parent Composer

Book and lyrics by parent Lyricist

By artist same as Artist

By author child Cartographer
By author child Reporter
By author parent Author
By author sibling Composer
By author sibling Originator

By composer same as Composer
By composer child Arranger
By composer parent Author
By composer sibling Originator

Commentaries by sibling Author of introduction etc
Commentaries by sibling Commentator for written text

Commentator same as Commentator

Compiled by same as Compiler
Compiled by sibling Transcriber

Conductor same as Conductor
Conductor parent Musical director
Conductor sibling Musical director

Contributions by same as Contributor

Contributions by parent Creator
Contributions by sibling Director
Contributions by sibling Editor

Cover design or artwork by parent Designer
Cover design or artwork by sibling Architect
Cover design or artwork by sibling Costume designer
Cover design or artwork by sibling Cover designer

Cover design or artwork by sibling Landscape architect

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

24

Created by same as Creator

Created by child Contributor
Created by child Director
Created by child Editor

Dancer same as Dancer

Designed by child Architect
Designed by child Costume designer
Designed by child Cover designer
Designed by child Landscape architect
Designed by same as Designer
Designed by sibling Draftsman

Director same as Director

Director parent Creator
Director sibling Contributor
Director sibling Editor

Dramatized by parent Adapter
Dramatized by sibling Author of screenplay

Drawings by child Illustrator
Drawings by sibling Artist

Edited and translated by parent Translator

Edited by same as Editor
Edited by parent Creator
Edited by sibling Contributor
Edited by sibling Director

Filmed photographed by parent Photographer

From an idea by same as Conceptor

From an idea by sibling Author

General rapporteur parent Reporter

Illustrated by same as Illustrator

Instrumental soloist parent Instrumentalist

Introduction by parent Author of introduction etc

Libretto by same as Librettist

Libretto by sibling Lyricist

Lyrics by same as Lyricist

Lyrics by sibling Librettist

Maps by same as Cartographer
Maps by parent Draftsman
Maps by sibling Reporter

Memoir by sibling Author of introduction etc

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

25

Narrator same as Narrator
Narrator parent Speaker
Narrator sibling Storyteller

Notes by sibling Author of introduction etc

Original author sibling Cartographer
Original author sibling Reporter

Other adaptation by sibling Adapter
Other adaptation by sibling Translator

Other compilation by parent Compiler

Other direction by parent Director

Performed by same as Performer

Performed by child Actor
Performed by parent Publisher

Performed by orchestra band ensemble parent Musician
Performed by orchestra band ensemble sibling Instrumentalist
Performed by orchestra band ensemble sibling Singer

Producer parent Contributor

Read by parent Speaker
Read by sibling Narrator
Read by sibling Storyteller

Screenplay by same as Author of screenplay

Software written by child Programmer
Software written by parent Author
Software written by sibling Composer
Software written by sibling Originator

Summary by sibling Author of introduction etc

Text by sibling Cartographer
Text by sibling Illustrator
Text by sibling Reporter

Translated by same as Translator
Translated by sibling Adapter

Vocal soloist parent Singer

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

26

SPARQL Queries used to create candidate mappings

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology
where {
{?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
?InTerm vmf:IsInVocabulary ?InAVS .
{?OutTerm owl:equivalentClass ?VmfTerm}
 UNION {?OutTerm owl:equivalentProperty ?VmfTerm} .
?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?InAVS=<marc21AVS#Relationship>) .
filter(?OutAVS=<onixAVS#CodeList17>)
}

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology
where {
{?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
?InTerm vmf:IsInVocabulary ?InAVS .
{?OutTerm owl:equivalentClass ?VmfTerm}
 UNION {?OutTerm owl:equivalentProperty ?VmfTerm} .
?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?OutAVS=<marc21AVS#Relationship>) .
filter(?InAVS=<onixAVS#CodeList17>)
}

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology
where {
 {?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
 ?InTerm vmf:IsInVocabulary ?InAVS .
 {?VmfTerm rdfs:subClassOf ?VmfParent.
 ?VmfSib rdfs:subClassOf ?VmfParent}
 UNION {?VmfTerm rdfs:subPropertyOf ?VmfParent.
 ?VmfSib rdfs:subPropertyOf ?VmfParent} .
 {?OutTerm owl:equivalentClass ?VmfSib}
 UNION {?OutTerm owl:equivalentProperty ?VmfSib} .
 ?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?InAVS=<marc21AVS#Relationship>) .
filter(?OutAVS=<onixAVS#CodeList17>)
}

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology
where {
 {?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
 ?InTerm vmf:IsInVocabulary ?InAVS .
 {?VmfTerm rdfs:subClassOf ?VmfParent.
 ?VmfSib rdfs:subClassOf ?VmfParent}
 UNION {?VmfTerm rdfs:subPropertyOf ?VmfParent.
 ?VmfSib rdfs:subPropertyOf ?VmfParent} .
 {?OutTerm owl:equivalentClass ?VmfSib}
 UNION {?OutTerm owl:equivalentProperty ?VmfSib} .
 ?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?OutAVS=<marc21AVS#Relationship>) .
filter(?InAVS=<onixAVS#CodeList17>)
}

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology

The Vocabulary Mapping Framework : an introduction v1.0 12.12.2009

27

where {
 {?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
 ?InTerm vmf:IsInVocabulary ?InAVS .
 {?VmfChild rdfs:subClassOf ?VmfTerm}
 UNION {?VmfChild rdfs:subPropertyOf ?VmfTerm} .
 {?OutTerm owl:equivalentClass ?VmfChild}
 UNION {?OutTerm owl:equivalentProperty ?VmfChild} .
 ?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?InAVS=<marc21AVS#Relationship>) .
filter(?OutAVS=<onixAVS#CodeList17>)
}

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology
where {
 {?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
 ?InTerm vmf:IsInVocabulary ?InAVS .
 {?VmfChild rdfs:subClassOf ?VmfTerm}
 UNION {?VmfChild rdfs:subPropertyOf ?VmfTerm} .
 {?OutTerm owl:equivalentClass ?VmfChild}
 UNION {?OutTerm owl:equivalentProperty ?VmfChild} .
 ?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?OutAVS=<marc21AVS#Relationship>) .
filter(?InAVS=<onixAVS#CodeList17>)
}

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology
where {
 {?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
 ?InTerm vmf:IsInVocabulary ?InAVS .
 {?VmfTerm rdfs:subClassOf ?VmfParent}
 UNION {?VmfTerm rdfs:subPropertyOf ?VmfParent} .
 {?OutTerm owl:equivalentClass ?VmfParent}
 UNION {?OutTerm owl:equivalentProperty ?VmfParent} .
 ?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?InAVS=<marc21AVS#Relationship>) .
filter(?OutAVS=<onixAVS#CodeList17>)
}

select ?VmfTerm ?InTerm ?InAVS ?OutTerm ?OutAVS
from coa_itd:Graph.Ontology
where {
 {?InTerm owl:equivalentClass ?VmfTerm}
 UNION {?InTerm owl:equivalentProperty ?VmfTerm} .
 ?InTerm vmf:IsInVocabulary ?InAVS .
 {?VmfTerm rdfs:subClassOf ?VmfParent}
 UNION {?VmfTerm rdfs:subPropertyOf ?VmfParent} .
 {?OutTerm owl:equivalentClass ?VmfParent}
 UNION {?OutTerm owl:equivalentProperty ?VmfParent} .
 ?OutTerm vmf:IsInVocabulary ?OutAVS .
filter(?OutAVS=<marc21AVS#Relationship>) .
filter(?InAVS=<onixAVS#CodeList17>)
}

